type.inbound
// "#" symbol, and then letters, numbers or more symbols (-#)
and regex.imatch(subject.subject, ".*#[a-z0-9-#]+$")
// not JUST letters
and not regex.imatch(subject.subject, ".*#[a-z-]+$")
// not JUST numbers
and not regex.imatch(subject.subject, ".*#[0-9-]+$")
and not any(beta.ml_topic(body.current_thread.text).topics,
.name in (
"Professional and Career Development",
"Reminders and Notifications"
)
and .confidence == "high"
)
// and 1 other suspicious element
and 2 of (
any(recipients.to, strings.icontains(sender.display_name, .email.domain.sld)),
(
regex.imatch(sender.display_name, ".*#[a-z0-9-#]+$")
and not regex.imatch(subject.subject, ".*#[a-z-]+$")
and not regex.imatch(subject.subject, ".*#[0-9-]+$")
),
any(ml.nlu_classifier(subject.subject).intents,
.name == "cred_theft" and .confidence == "high"
),
body.current_thread.text is null
)
// standard negations
and not profile.by_sender_email().any_messages_benign
and not profile.by_sender_email().solicited
and (
(
sender.email.domain.root_domain in $high_trust_sender_root_domains
and not headers.auth_summary.dmarc.pass
)
or sender.email.domain.root_domain not in $high_trust_sender_root_domains
)
Playground
Test against your own EMLs or sample data.