• Sublime Core Feed
Medium Severity

Request for Quote or Purchase (RFQ|RFP) with suspicious sender or recipient pattern

Description

RFQ/RFP scams involve fraudulent emails posing as legitimate requests for quotations or purchases, often sent by scammers impersonating reputable organizations. These scams aim to deceive recipients into providing sensitive information or conducting unauthorized transactions, often leading to financial loss, or data leakage.

References

No references.

Sublime Security
Created Aug 17th, 2023 • Last updated Jan 15th, 2026
Source
type.inbound
and (
  (
    (
      length(recipients.to) == 0
      or all(recipients.to,
             .display_name in (
               "Undisclosed recipients",
               "undisclosed-recipients"
             )
      )
    )
    and length(recipients.cc) == 0
  )
  or (
    sender.email.domain.root_domain in $free_email_providers
    and any(headers.reply_to, .email.email != sender.email.email)
    and any(headers.reply_to, .email.email not in $recipient_emails)
  )
  or (
    length(headers.reply_to) > 0
    and all(headers.reply_to,
            .email.domain.root_domain != sender.email.domain.root_domain
            and not .email.domain.root_domain in $org_domains
            // wetransfer includes user specific reply-to's & link display text which triggers NLU logic further within the rule
            and not sender.email.domain.root_domain == "wetransfer.com"
    )
  )
  or (
    length(recipients.to) == 1
    and all(recipients.to, .email.email == sender.email.email)
    and (length(recipients.cc) > 0 or length(recipients.bcc) > 0)
  )
  or (
    length(recipients.to) == 0
    and length(recipients.cc) == 1
    and sender.email.email == recipients.cc[0].email.email
  )
)
and (
  // Group the keyword patterns that specifically indicate RFQ/RFP
  (
    1 of (
      // RFQ/RFP specific language patterns
      regex.icontains(body.current_thread.text,
                      '(discuss.{0,15}purchas(e|ing))'
      ),
      regex.icontains(body.current_thread.text,
                      '(sign(ed?)|view).{0,10}(purchase order)|Request for (a Quot(e|ation)|Proposal)'
      ),
      regex.icontains(body.current_thread.text,
                      '(please|kindly).{0,30}(?:proposal|quot(e|ation))'
      ),
      regex.icontains(subject.subject,
                      '(request for (purchase|quot(e|ation))|\bRFQ\b|\bRFP\b|bid invit(e|ation))'
      ),
      any(attachments,
          regex.icontains(.file_name, "(purchase.?order|Quot(e|ation))")
      ),
      any(ml.nlu_classifier(body.current_thread.text).tags,
          .name == "purchase_order" and .confidence == "high"
      ),
      any(ml.nlu_classifier(body.current_thread.text).entities,
          .name == "financial" and regex.imatch(.text, "rfp|rfq")
      )
    )
    // Required: at least one RFQ/RFP keyword pattern

    // Optional: at least one additional indicator (can be another keyword pattern or a non-keyword indicator)
    and (
      2 of (
        // RFQ/RFP keyword patterns (same as above)
        regex.icontains(body.current_thread.text,
                        '(discuss.{0,15}purchas(e|ing))'
        ),
        regex.icontains(body.current_thread.text,
                        '(sign(ed?)|view).{0,10}(purchase order)|Request for a Quot(e|ation)'
        ),
        regex.icontains(body.current_thread.text,
                        '(please|kindly).{0,30}(?:proposal|quot(e|ation))'
        ),
        regex.icontains(subject.subject,
                        '(request for (purchase|quot(e|ation))|\bRFQ\b|\bRFP\b|bid invit(e|ation))'
        ),
        any(attachments,
            regex.icontains(.file_name, "(purchase.?order|Quot(e|ation))")
        ),
        any(ml.nlu_classifier(body.current_thread.text).tags,
            .name == "purchase_order" and .confidence == "high"
        ),
        any(ml.nlu_classifier(body.current_thread.text).entities,
            .name == "financial" and regex.imatch(.text, "rfp|rfq")
        ),

        // Non-keyword indicators
        (
          any(ml.nlu_classifier(body.current_thread.text).entities,
              .name == "request"
          )
          and any(ml.nlu_classifier(body.current_thread.text).entities,
                  .name == "urgency"
          )
          and not any(beta.ml_topic(body.current_thread.text).topics,
                      .name == "Advertising and Promotions"
                      and .confidence == "high"
          )
        ),
        (
          0 < length(filter(body.links,
                            (
                              .href_url.domain.domain in $free_subdomain_hosts
                              or .href_url.domain.domain in $free_file_hosts
                              or network.whois(.href_url.domain).days_old < 30
                            )
                            and (
                              regex.match(.display_text, '[A-Z ]+')
                              or any(ml.nlu_classifier(.display_text).entities,
                                     .name in ("request", "urgency")
                              )
                              or any(ml.nlu_classifier(.display_text).intents,
                                     .name in ("cred_theft")
                              )
                            )
                     )
          ) < 3
        ),
        // mentions an attachment that does not exist
        (
          length(attachments) == 0
          and strings.icontains(body.current_thread.text, "attached")
        )
      )
    )
  )
  or (
    length(attachments) == 1
    and length(body.current_thread.text) < 100
    and all(attachments,
            .file_type in $file_types_images
            and any(file.explode(.),
                    2 of (
                      regex.icontains(.scan.ocr.raw,
                                      '(discuss.{0,15}purchas(e|ing))'
                      ),
                      regex.icontains(.scan.ocr.raw,
                                      '(sign(ed?)|view).{0,10}(purchase order)|Request for a Quot(e|ation)'
                      ),
                      regex.icontains(.scan.ocr.raw,
                                      '(please|kindly).{0,30}quote'
                      ),
                      (
                        any(ml.nlu_classifier(.scan.ocr.raw).entities,
                            .name == "request"
                        )
                        and any(ml.nlu_classifier(.scan.ocr.raw).entities,
                                .name == "urgency"
                        )
                      ),
                      any(ml.nlu_classifier(.scan.ocr.raw).tags,
                          .name == "purchase_order" and .confidence == "high"
                      ),
                      any(ml.nlu_classifier(.scan.ocr.raw).entities,
                          .name == "financial"
                          and regex.imatch(.text, "rfp|rfq")
                      ),
                    )
            )
    )
  )
)

// negate highly trusted sender domains unless they fail DMARC authentication
and (
  (
    sender.email.domain.root_domain in $high_trust_sender_root_domains
    and not headers.auth_summary.dmarc.pass
  )
  or sender.email.domain.root_domain not in $high_trust_sender_root_domains
)
and (
  (
    (
      not profile.by_sender().solicited
      or profile.by_sender().days_since.last_contact > 30
    )
    and not profile.by_sender().any_messages_benign
  )
  // sender address listed as a recipient 
  or (
    length(recipients.to) == 1
    and sender.email.email in map(recipients.to, .email.email)
  )
)
MQL Rule Console
DocsLearning Labs

Playground

Test against your own EMLs or sample data.

Share

Post about this on your socials.

Get Started. Today.

Managed or self-managed. No MX changes.

Deploy and integrate a free Sublime instance in minutes.
Get Started