Medium Severity
Brand Impersonation: SendGrid
Description
Detects inbound messages that impersonate SendGrid through display name or domain manipulation, combined with security or authentication-themed content, while failing authentication checks and originating from untrusted sources.
References
No references.
Sublime Security
Created Mar 18th, 2025 • Last updated Apr 15th, 2025
Feed Source
Sublime Core Feed
Source
type.inbound
and (
// display name contains sendgrid
(
strings.ilike(strings.replace_confusables(sender.display_name),
'*sendgrid*'
)
// levenshtein distance similar to sendgrid
or strings.ilevenshtein(strings.replace_confusables(sender.display_name),
'sendgrid'
) <= 1
// no display name, local_part contains sendgrid
or (
strings.ilike(strings.replace_confusables(sender.email.local_part),
'*sendgrid*'
)
and sender.display_name is null
)
)
)
and (
any(beta.ml_topic(body.current_thread.text).topics,
.name in (
"Security and Authentication",
"Secure Message",
"Reminders and Notifications"
)
and .confidence in ("medium", "high")
)
or any(beta.ml_topic(beta.ocr(beta.message_screenshot()).text).topics,
.name in (
"Security and Authentication",
"Secure Message",
"Reminders and Notifications"
)
and .confidence in ("medium", "high")
)
or any(ml.nlu_classifier(body.current_thread.text).intents,
.name == "cred_theft" and .confidence == "high"
)
or any(ml.nlu_classifier(beta.ocr(beta.message_screenshot()).text).intents,
.name == "cred_theft" and .confidence == "high"
)
)
// and the sender is not in org_domains or from sendgrid domains and passes auth
and not (
sender.email.domain.root_domain in $org_domains
or (
sender.email.domain.root_domain in ("sendgrid.com")
and headers.auth_summary.dmarc.pass
)
)
// and the sender is not from high trust sender root domains
and (
(
sender.email.domain.root_domain in $high_trust_sender_root_domains
and not headers.auth_summary.dmarc.pass
)
or sender.email.domain.root_domain not in $high_trust_sender_root_domains
)
and not profile.by_sender().solicited
Playground
Test against your own EMLs or sample data.