• Sublime Core Feed
Medium Severity

Attachment: Fake secure message and suspicious indicators

Labels

Credential Phishing
Image as content
Impersonation: Brand
Social engineering
Content analysis
File analysis
Header analysis
Natural Language Understanding
Sender analysis

Description

Body contains language resembling credential theft, and an attached "secure message" from an untrusted sender.

References

No references.

Sublime Security
Created May 2nd, 2024 • Last updated Sep 16th, 2024
Feed Source
Sublime Core Feed
Source
GitHub
type.inbound
and any(ml.nlu_classifier(body.current_thread.text).intents,
        .name == "cred_theft" and .confidence == "high"
)

// ----- other suspicious signals here -----
and any(attachments,
        any(file.explode(.),
            any(.scan.strings.strings, strings.icontains(., "secure message"))
            and (
              any(.scan.url.urls, .domain.tld in $suspicious_tlds)
              or any(.scan.url.urls,
                     any(.rewrite.encoders,
                         strings.icontains(., "open_redirect")
                     )
              )
            )
            and (
              any(.scan.url.urls,
                  .domain.root_domain != sender.email.domain.root_domain
              )
              or not sender.email.domain.valid
            )
        )
)

// negate legitimate message senders
and (
  (
    sender.email.domain.root_domain not in ("protectedtrust.com")
    or not sender.email.domain.valid
  )
  and any(headers.hops,
          .index == 0
          and not any(.fields,
                      strings.contains(.value,
                                       'multipart/mixed; boundary="PROOFPOINT_BOUNDARY_1"'
                      )
          )
  )
  and not (
    any(headers.hops, any(.fields, .name == 'X-ZixNet'))
    and any(headers.domains,
            .root_domain in ("zixport.com", "zixcorp.com", "zixmail.net")
    )
  )
  and not all(body.links,
            .href_url.domain.root_domain in ("mimecast.com", "cisco.com")
  )
)
and (
  (
    profile.by_sender().prevalence in ("new", "outlier")
    and not profile.by_sender().solicited
  )
  or (
    profile.by_sender().any_messages_malicious_or_spam
    and not profile.by_sender().any_false_positives
  )
)
and not profile.by_sender().any_false_positives

// negate highly trusted sender domains unless they fail DMARC authentication
and (
  (
    sender.email.domain.root_domain in $high_trust_sender_root_domains
    and not headers.auth_summary.dmarc.pass
  )
  or sender.email.domain.root_domain not in $high_trust_sender_root_domains
)
MQL Rule Console
DocsLearning Labs

Playground

Test against your own EMLs or sample data.

Share

Post about this on your socials.

Get Started. Today.

Managed or self-managed. No MX changes.

Get Started